- finish balloon.

Gas Density

\[
D = \frac{\text{mass}}{\text{volume}}
\]

\[
\text{MW (M)} = \frac{\text{mass}}{\text{mole}} = \frac{m}{n}, \quad n = \frac{m}{M}
\]

\[
P = \frac{nRT}{V}
\]

\[
\Rightarrow \quad \frac{m}{V} = \frac{PM}{RT} = D
\]

Molar mass of a gas:

Solve for \(M \):

\[
\frac{PV}{M} = \frac{mRT}{M} \quad \Rightarrow \quad M = \frac{mRT}{PV}
\]

- \(m \): weight \(\text{M} \) mass then weigh w/g.
- \(R \): \(\text{const} \)
- \(T \): \(\text{temp} \)
- \(P \): \(\text{pressure (known)} \)
- \(V \): \(\text{known volume of the container} \)

5.5 **Gas Stoichiometry**

\(PV = nRT \) is just another offramp for mole superhighway: \(n = \frac{PV}{RT} \)

What mass of solid \(\text{NH}_4\text{Cl} \) is formed when 73.0 g of \(\text{NH}_3 \) mixed with equal mass of \(\text{HCl} \)?

\[
\text{NH}_3 + \text{HCl} \rightarrow \text{NH}_4\text{Cl}
\]

\[
\frac{73.0 \text{g} \text{NH}_3}{17.03 \text{g} \text{mol} \text{NH}_3} = 4.2866 \text{ mol NH}_3
\]

\[
\frac{73.0 \text{g} \text{HCl}}{36.46 \text{g} \text{mol} \text{HCl}} = 2.0022 \text{ mol HCl}
\]
NH₃ is leftover

\[2 \text{ mol RXN} \rightarrow 1 \text{ mol NH₃} \quad \text{5.3397 g NH₃} = 107. \text{ g NH₃} \]

What volume of gas remains @ 140°C & 752 mmHg

\[PV = nRT, \quad V = \frac{nRT}{P} = \frac{(4.3866 \text{ mol NH₃} \cdot 2.002 \text{ mol RXN})(0.0821 \text{ atm} \cdot \text{L} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}) (273.15 + 140)}{(752 \text{ mmHg}) (\frac{1 \text{ atm}}{100 \text{ mmHg}})} \]

\[= 54.43 \text{ L} \]

\[n? = 32.4 \text{ L/mol}, \quad \text{and yes} \checkmark \]

Henry's Law: Gas Solubility

How does a gas exert pressure?

- gas molecules are zooming around & hit the wall, bouncing off
- puts a force on the wall.

\[PV = nRT, \quad P = \frac{nRT}{V} \]

- more moles \(\rightarrow \) more dances \(\rightarrow \) up
- high temp \(\rightarrow \) faster zooming \(\rightarrow \) faster dances \(\rightarrow \) up
- high volume \(\rightarrow \) less time hitting wall \(\rightarrow \) fewer dances \(\rightarrow \) down
- \(R \): could be calculated from mass of molecules & stuff
One concept that arises from this is that each gas molecule exerts its own pressure.

Or, for a given substance gas, each one exerts its own pressure.

→ For mixtures, we get Dalton's Law of Partial Pressures.

→ \(P_{\text{Total}} = P_{\text{gas}1} + P_{\text{gas}2} + \ldots \)

with gases \(A, B \):

\[P_T = P_A + P_B \]

\[\begin{align*}
P_A &= 50 \text{ mm Hg} \\
P_B &= 50 \text{ mm Hg}
\end{align*} \]

→ same volume

\[P = 100 \text{ mm Hg} = P_A + P_B \]

\[P_T = P_A + P_B \]

\[P_A = \frac{n_A RT}{V}, \quad P_B = \frac{n_B RT}{V} \]

\[P_T = \frac{n_A RT}{V} + \frac{n_B RT}{V} \]

\[= \left(\frac{n_A + n_B}{V} \right) \cdot \frac{RT}{V} \]

\[n_{\text{tot}} = n_A + n_B \]

\[P_T = \frac{n_T RT}{V} \]
What about fraction of a given gas?

\[\frac{P_A}{P_T} \times 100\% \] would be percent from the mixture

\[\rightarrow \text{percent by moles} \]

When we do fractional moles, we don't do %:

\[\text{mole fraction}(X) \text{ from 0.000 \rightarrow 1.000, represents mole of A subst \over total moles} \]

\[X_A = \frac{n_A}{n_T} = \frac{n_A}{n_A + n_B} \]

San Dalton:

\[\frac{P_A}{P_T} = \left(\frac{n_A}{n_A + n_B} \right) \left(\frac{RT}{X} \right) = \frac{n_A}{n_T} = \frac{n_A}{n_A + n_B} \]

Humid Air

Water is partially a gas at normal temperatures

Water vapor ranges from 4.58 mmHg @90°C into 760 mmHg @100°C

\[\rightarrow \text{This is def. of boiling point where vapor pressure of} \]

\[\text{a subst. is equal to atm.} \]

\[\rightarrow \text{If we collect gas above water, we need to account for H}_2\text{O. \ see figure in book (HINT HINT)} \]